본문으로 바로가기 주메뉴 바로가기

사용자별 맞춤메뉴

자주찾는 메뉴

추가하기
닫기

연구성과

contents area

detail content area

Asymmetric dimethylarginine (ADMA) is identified as a potential biomarker of insulin resistance in s
  • 작성일2019-10-11
  • 최종수정일2019-10-11
  • 담당부서연구기획과
  • 연락처043-719-8033
  • 454

Scientific Reports, 2018, 8(1), Art. No. 2133, DOI: https://doi.org/10.1038/s41598-018-20549-0


Asymmetric dimethylarginine (ADMA) is identified as a potential biomarker of insulin resistance in skeletal muscle

Lee W., Lee H.J., Jang H.B., Kim H.-J., Ban H.-J., Kim K.Y., Nam M.S., Choi J.S., Lee K.-T., Cho S.B., Park S.I., Lee H.-J.


Abstract

    To unravel metabolic determinats of insulin resistance, we performed a targeted metabolomics analysis in Korean Children-Adolescent Cohort Study (KoCAS, n = 430). Sixty-seven metabolites were associated with insulin resistance in adolescents and the association also found in an adult population (KoGES, n = 2,485). Functional interactions of metabolites with gene/proteins using biological pathway with insulin resistance were not identified biological significance and regulatory effects of asymmetric dimethylarginine (ADMA). However, ADMA showed a higher association with adolescent obesity (P < 0.001) and adult diabetes (P = 0.007) and decreased after obesity intervention program. Functional studies in cellular and mouse models demonstrated that an accumulation of ADMA is associated with the regulation of obesity-induced insulin resistance in skeletal muscle. ADMA treatment inhibited dimethylarginine-dimethylaminohydrolase (DDAH) activity and mRNA expression in insulin resistance muscle cell. Moreover, the treatment led to decrease of phosphorylation of insulin receptor (IR), AKT, and GLUT4 but increase of protein-tyrosine phosphatase 1B (PTP1B). Accordingly, increased ADMA significantly inhibited glucose uptake in myotube cell. We suggest that accumulation of ADMA is associated with modulation of insulin signaling and insulin resistance. ADMA might expand the possibilities of new therapeutic target for functional and clinical implications in the control of energy and metabolic homeostasis in humans.




  • 본 연구는 질병관리본부 연구개발과제연구비를 지원받아 수행되었습니다.
  • This research was supported by a fund by Research of Korea Centers for Disease Control and Prevention.


본 공공저작물은 공공누리  출처표시 조건에 따라 이용할 수 있습니다 본 공공저작물은 공공누리 "출처표시" 조건에 따라 이용할 수 있습니다.
TOP